Mitochondrial ATP Synthase: A Bioinformatic Approach Reveals New Insights About the Roles of Supernumerary Subunits g and A6L

Sangjin Hong¹ and Peter L. Pedersen^{1,2}

Received September 1, 2004; accepted September 30, 2004

The mitochondrial ATP synthase is a membrane protein complex which couples the proton gradient across the mitochondrial inner membrane to the synthesis of ATP from ADP + P_i . The complex is composed of essential subunits for its motor functions and supernumerary subunits, the roles of which remain to be elucidated. Subunits *g* and A6L are supernumerary subunits, and the specific roles of these subunits are still matters of debate. To gain insight into the functions of these two subunits, we carried out the alignment and the homolog search of the protein sequences of the subunits and found the following features: Subunit *g* appears to have isoforms in animals, and the transmembrane domain of the animal subunit *g* contains a completely conserved acidic residue in the middle of a helix on the conserved side of the function of subunit *g*. The alignment of A6L protein sequences shows a conserved aromatic residue at the N-terminal domain with which the N-terminal MPQL sequence comprises a unique MPQLX₄Ar motif that can signify the protein A6L. The conserved aromatic residue may also be important for the function of A6L.

KEY WORDS: Bioinformatics; mitochondria; ATP synthase; supernumerary subunits; subunit g; subunit A6L.

INTRODUCTION

The mitochondrial ATP synthase (Fig. 1) is responsible for the generation of ATP driven by an electrochemical gradient of protons across the inner membrane. The mitochondrial ATP synthase is composed of at least 17 or 20–21 subunits in animals and fungi, respectively (Hong and Pedersen, 2003; Pedersen *et al.*, 2000). Compared to the bacterial ATP synthase, which seems to contain the minimal composition required for the activity of ATP synthase, the mitochondrial ATP synthase includes additional subunits, called supernumerary subunits. Subunits *g* and A6L that belong to the supernumerary subunits are found in both the animal and fungal mitochondrial ATP synthase. These subunits are integral membrane proteins

¹ Department of Biological Chemistry, Johns Hopkins University, School of Medicine, 725 N. Wolfe Street, Baltimore, Maryland 21205-2185. with a single transmembrane helix. The N-termini of subunits g and A6L are on the matrix and cytosolic sides of the membranes, respectively (Belogrudov *et al.*, 1996). The functions of the subunits are still matters of debate although some roles of the subunit g have been reported in yeast (Arnold *et al.*, 1998; Boyle *et al.*, 1999). To gain insight into the potential functions of the subunit g and A6L, we aligned the protein sequences of the subunits and searched for the homologous proteins in the genomes of which the whole sequences are available. Here we found some interesting features of these subunits that may be of functional significance.

MATERIALS AND METHODS

The protein sequences were retrieved by BLAST database search (Altschul and Koonin, 1998; Altschul *et al.*, 1997) with the default parameters (BLOSUM62 matrix, 0.005 as an *E*-value threshold, no low complexity filtering in the query sequence) on the nonredundant (nr)

² To whom correspondence should be addressed; e-mail: ppederse@ jhmi.edu.

Fig. 1. Current view of the structure of mitochondrial ATP synthase. For the generation of the model, yeast mitochondrial ATP synthase (1qol) was used as a template and the coordinates of each subunit of the template structure were replaced by superimposition with the coordinates from high resolution structures (α , β , and IF₁ subunits from 1OHH; γ , δ , and ε subunits from 1e79; *a* and *c* subunits from 1c17; transmembrane part of subunit *b* from 1b9u). The other subunits in the model were constructed manually using Quanta. No positions are assigned to the subunits *d*, *e*, and factor B, one or more of which is a candidate for the collar.

protein database. The sequences collected were aligned using ClustalW (Thompson, 1994) and Macaw (Schuler *et al.*, 1991) followed by manual adjustment. The prediction of transmembrane (TM) region was performed using SOSUI (Hirokawa *et al.*, 1998).

Full species names are (1) FUNGI: C. glabrata— Candida glabrata; E. nidulans—Emericella nidulans; K. lactis—Kluyveromyces lactis; N. crassa—Neurospora crassa; P. anserina—Podospora anserina; S. pombe— Schizosaccharomyces pombe; Yeast—Saccharomyces cerevisiae; Y. lipolytica—Yarrowia lipolytica (2) FUNGI/METAZOA (incertae sedis): A. parasiticum— Amoebidium parasiticum (3) METAZOA (Animal): A.

pectinifera—Asterina pectinifera; Atlantic cod—Gadus morhua; Atlantic salmon-Salmo salar; Blue whale-Balaenoptera musculus; Bovine-Bos taurus; Cat-Felis catus; C. elegans-Caenorhabditis elegans; Cheetah-Acinonyx jubatus; Chicken-Gallus gallus; Coelacanth-Latimeria chalumnae; Dog—Canis familiaris; Donkey asinus; Earthworm—Lumbricus terrestris; Equus European sea bass-Dicentrarchus labrax; Fruit fly-Drosophila melanogaster; Geoffroy's cat-Oncifelis geoffroyi; Goldfish-Carassius auratus; Gorilla-Gorilla gorilla; Guinea pig-Cavia porcellus; Harbor seal—*Phoca vitulina*; Hippopotamus—*Hippopotamus* amphibius; Honeybee-Apis mellifera; Horse-Equus caballus; Human—Homo sapiens; Ibex—Capra ibex; Jaguarundi—Herpailurus yaguarondi; Lancelet-Branchiostoma lanceolatum; Little-red-flying-fox-Pteropus scapulatus; Meadow vole-Microtus pennsylvanicus; Mouse-Mus musculus; New Zealand longtailed bat-Chalinolobus tuberculatus; Orangutan-Pongo pygmaeus; Ostrich—Struthio camelus; Pig—Sus scrofa; Puma-Puma concolor; Purple sea urchin-Strongylocentrotus purpuratus; Rabbit—Oryctolagus Rat-Rattus norvegicus; Rhinoceroscuniculus; unicornis; Sea lamprey-Petromyzon Rhinoceros marinus; Sea urchin-Paracentrotus lividus; Sheep-Ovis aries; Spiny dogfish-Squalus acanthias; Spotted catshark—Scyliorhinus canicula; Squirrel—Sciurus vulgaris; Wallaroo-Macropus robustus (4) MALAWI-MONAS: M. jakobiformis-Malawimonas jakobiformis (5) OCHROMONADALES: O. danica-Ochromonas danica (6) LAMINARIALES: L. digitata-Laminaria digitata (7) RECLINOMONAS: R. americana-Reclinomonas americana (8) MESOSTIGMATALES: M. viride—Mesostigma viride (9) COLEOCHAETALES: C.globosum—Chaetosphaeridium globosum (10)EMBRYOPHYTA (Plant): A. thaliana—Arabidopsis thaliana; Beet—Beta vulgaris; Carrot—Daucus carota; Evening primrose-Oenothera berteriana; Radish-Raphanus sativus; Rice-Oriza sativa; Sunflower-Helianthus annuus.

RESULTS AND DISCUSSION

Isoforms of Animal Subunit g

From the search for the subunit g homologs in the protein sequence database, we found that there are sequence homologs of subunit g in animals, which show significant homologies to the identified subunits g. In humans, we retrieved three different protein sequences of subunit g from the BLAST search. After carefully examining the sources of the sequences and excluding differences

	1 11	21	31	41	51	61
^H Subunit g-1	MAQFVRNLVEKTPAL	VNAAVTY <mark>SKP</mark> RL	ATFWYYAKVEI	LVPPTPAEI	PRAIQSLKK	IANSAQT
^H Subunit g-2a	MAOFVRNLVEKTPAL	VNAAVTY <mark>SKPRL</mark>	ATFWYYAKVEI	LVPPTPAEI	PRAIOSLKK	IVNSAOT
^H Subunit g-2b	MGOFVRNLVEKTPAL	VNAAVTY <mark>SKPRL</mark>	ATFWYYAKVEI	LVPPTPAEI	PKAIOSLKK	IVNSAOT
Homolog 1	$M\Delta = PFVRNLVEKTPALX$	NAAVTYL.KPRL		VPPTPART	PRATOSLKK	IVSSAOT
Homolog 1					and goldan	1000101
^M Subunit σ	MA KFIRNFAFKAPSM	AAAVTYSKPRI.	TEWHYAKVEI		PTATOSVKK	TIOSAKT
MHomolog 1		ZAAAVTVSKPPI.	TEWHYAKVEI		PTATOSVKKK	TIOSAKT
M Homolog 2						TTOCAK
filling 2	MA Kr INNF SEKALSM		VIEWNIAKVEI			
R _{Homolog} 1						TTUCAOT
RIL 2		VAAAVIISKPRL	AIFWHIARVEI		PIAIQSMKS	IIHSAUI
Homolog 2	MAKFICNFVEKAPSVI	MAAAVTYL KP RL	A.I.F. TH X YK A EI	LABD. BGET	PTAIQSMKK	IIQSAKI
Homolog 3	MAKFIRNFTEKAPSM	VAAAVDLLK 2	ASIGHILALR-		-QAIQSMK <mark>K</mark>	II <mark>H</mark> S A KA
F						
Homolog 1	MASLATKGSGL	VNRLLTQARPQLI	D VFL K YAKVEI	LTPPTPADI	PAIRQGLG	NIIKG A KT
'Homolog 2	MSQLIAKAKTL	VNKMIVAARPQLI	DEFWKYAKVEI	LSPPLPADE	QKLKQTAESAKL	ASKKDMKGQLKK
C		-				
Homolog 1	MATHKLSFFEKLANTFGAL	YRHQ <mark>AQ</mark> QFPRR L i	AILKAVGKHEI	LAPPRSADI	PAIKADWAK	<mark>LQKFIE</mark> I
Homolog 2	MAAPKLGF FEKIANLTGALY	YRHQ <mark>HA</mark> QFPRR <mark>F</mark> I	AILKAVGKHEI	LAPPR <mark>Q</mark> ADW	PAIKADWAK	VQSFIQ T
	71 83	191	101			
HSubunit g-1a	71 83 GSFKQLTVKEA <mark>V</mark> LNGLVATI	l 91 EVLMWFYV <mark>G</mark> EII	101 GKRGIIGYDV-			
^H Subunit g-1a ^H Subunit g-2a	71 8: GSFKQLTVKEAVLNGLVATI GSFKQLTVKEAVLNGLVATI	1 91 EVLMWFYVGEII EVLMWFYVGEII	101 GKRGIIGYDV- GKRGIIGYDV-			
^H Subunit g-1a ^H Subunit g-2a ^H Subunit g-2b	71 8: GSFKQLTVKEAVLNGLVATI GSFKQLTVKEAVLNGLVATI GSFKQLTVKEAVLNGLVATI	1 91 EVLMWFYVGEIIC EVLMWFYVGEIIC EVLMWFYVGEIIC	101 GKRGIIGYDV- GKRGIIGYDV- GKRGIIGYDV-			
^H Subunit g-1a ^H Subunit g-2a ^H Subunit g-2b ^H Homolog 1	71 8: GSFKQLTVKEAVLNGLVATH GSFKQLTVKEAVLNGLVATH GSFKQLTVKEAVLNGLVATH GSFKQLTVKEALLNGLVATH	l 91 EVLMWFYVGEII EVLMWFYVGEII EVLMWFYVGEII EVSTWFYVREIT	101 GKRGIIGYDV GKRGIIGYDV GKRGIIGYDV GKRGIIG			
^H Subunit g-1a ^H Subunit g-2a ^H Subunit g-2b ^H Homolog 1	71 8: GSFKQLTVKEAVLNGLVATH GSFKQLTVKEAVLNGLVATH GSFKQLTVKEAVLNGLVATH GSFKQLTVKEALLNGLVATH	l 91 SVLMWFYVGEII SVLMWFYVGEII SVLMWFYVGEII SVSTWFYVREII	101 GKRGIIGYDV GKRGIIGYDV GKRGIIGYDV GKRGIIG			
^H Subunit g-1a ^H Subunit g-2a ^H Subunit g-2b ^H Homolog 1 ^M Subunit g	71 8: GSFKQLTVKEAVLNGLVATH GSFKQLTVKEAVLNGLVATH GSFKQLTVKEALLNGLVATH GSFKHLTVKEAVLNGLVATH	1 91 EVLMWFYVGEIIG EVLMWFYVGEIIG EVLMWFYVGEIIG EVSTWFYVREITG	101 GKRGIIGYDV GKRGIIGYDV GKRGIIG GKRGIIG			
^H Subunit g-1a ^H Subunit g-2a ^H Subunit g-2b ^H Homolog 1 ^M Subunit g ^M Homolog 1	71 8: GSFKQLTVKEAVLNGLVATH GSFKQLTVKEAVLNGLVATH GSFKQLTVKEALLNGLVATH GSFKHLTVKEAVLNGLVATH	1 91 SVLMWFYVGEIIG SVLMWFYVGEIIG SVLMWFYVGEIIG SVSTWFYVREITG SVWMWFYIGEIIG	101 3KRGIIGYDV- 3KRGIIGYDV- 3KRGIIGYDV- 3KRGIVGYDV- 3KRGIVGYDV- 3KRGIVGYDV-			
^H Subunit g-1a ^H Subunit g-2a ^H Subunit g-2b ^H Homolog 1 ^M Subunit g ^M Homolog 1 ^M Homolog 2	71 8: GSFKQLTVKEAVLNGLVATH GSFKQLTVKEAVLNGLVATH GSFKQLTVKEAVLNGLVATH GSFKHLTVKEAVLNGLVATH GSFKHLTVKEAVLNGLVATH	1 91 SVLMWFYVGEIIG SVLMWFYVGEIIG SVLMWFYVGEIIG SVSTWFYVREITG SVMWFYIGEIIG SVMWFYIGEIIG	101 3KRGIIGYDV- 3KRGIIGYDV- 3KRGIIGYDV- 3KRGIVGYDV- 3KRGIVGYDV- 3KRGIVGYDV-			
^H Subunit g-1a ^H Subunit g-2a ^H Subunit g-2b ^H Homolog 1 ^M Subunit g ^M Homolog 1 ^M Homolog 2	71 83 GSFKQLTVKEAVLNGLVATH GSFKQLTVKEAVLNGLVATH GSFKQLTVKEAVLNGLVATH GSFKHLTVKEAVLNGLVATH GSFKHLTVKEAVLNGLVATH	1 91 EVLMWFYVGEII EVLMWFYVGEII EVLMWFYVGEII EVSTWFYVREII EVWMWFYIGEII EVWMWFYIGEII EVLMWFYIGEIM	101 GKRGIIGYDV- GKRGIIGYDV- GKRGIIGYDV- GKRGIVGYDV- GKRGIVGYDV- GKRGIVGYDV-			
^H Subunit g-1a ^H Subunit g-2a ^H Subunit g-2b ^H Homolog 1 ^M Subunit g ^M Homolog 1 ^M Homolog 2 ^R Homolog 1	71 8: GSFKQLTVKEAVLNGLVATH GSFKQLTVKEAVLNGLVATH GSFKQLTVKEAVLNGLVATH GSFKHLTVKEAVLNGLVATH GSFKHLTVKEAVLNGLVATH	1 91 SVLMWFYVGEII SVLMWFYVGEII SVLMWFYVGEII SVSTWFYVGEII SVWMWFYIGEII SVLMWFYIGEII SVLMWFYIGEII	101 GKRGIIGYDV- GKRGIIGYDV- GKRGIIGYDV- GKRGIVGYDV- GKRGIVGYDV- GKRGIVGYDV-			
^H Subunit g-1a ^H Subunit g-2a ^H Subunit g-2b ^H Homolog 1 ^M Subunit g ^M Homolog 1 ^M Homolog 2 ^R Homolog 1 ^B Homolog 2	71 8: GSFKQLTVKEAVLNGLVATH GSFKQLTVKEAVLNGLVATH GSFKQLTVKEAVLNGLVATH GSFKHLTVKEAVLNGLVATH GSFKHLTVKEAVLNGLVATH GSFKHLTVKEAVLNGLVATH	1 91 SVLMWFYVGEII SVLMWFYVGEII SVLMWFYVGEII SVSTWFYVGEII SVWMWFYIGEII SVMMWFYIGEII SVUMWFYIGEII	101 GKRGIIGYDV- GKRGIIGYDV- GKRGIIGYDV- GKRGIVGYDV- GKRGIVGYDV- GKRGIVGYDV- GKRGIVGYDV-			
^H Subunit g-1a ^H Subunit g-2a ^H Subunit g-2b ^H Homolog 1 ^M Subunit g ^M Homolog 1 ^M Homolog 2 ^R Homolog 1 ^R Homolog 2 ^R Homolog 2 ^R Homolog 2	71 8: GSFKQLTVKEAVLNGLVATH GSFKQLTVKEAVLNGLVATH GSFKQLTVKEAVLNGLVATH GSFKHLTVKEAVLNGLVATH GSFKHLTVKEAVLNGLVATH GSFKHLTVKEAVLNGLVATH CNFKHLTVKEAVLNGLVATH	1 91 EVLMWFYVGEII EVLMWFYVGEII EVLMWFYVGEII EVSTWFYVGEII EVWMWFYIGEII EVWMWFYIGEII EVWMWFYIGEII EVWMWFYIGEII	101 GKRGIIGYDV- GKRGIIGYDV- GKRGIIGYDV- GKRGIVGYDV- GKRGIVGYDV- GKRGIVGYDV- GKRGIVGYDV- GKRGIVGYDV-			
^H Subunit g-1a ^H Subunit g-2a ^H Subunit g-2b ^H Homolog 1 ^M Subunit g ^M Homolog 1 ^M Homolog 2 ^R Homolog 1 ^R Homolog 2 ^R Homolog 3	71 8: GSFKQLTVKEAVLNGLVATH GSFKQLTVKEAVLNGLVATH GSFKQLTVKEAVLNGLVATH GSFKHLTVKEAVLNGLVATH GSFKHLTVKEAVLNGLVATH GSFKHLTVKEAVLNGLVATH CGFQHLTVKEAVLNGLVATH	l 91 EVLMWFYVGEII EVLMWFYVGEII EVLMWFYVGEII EVMWFYVGEII EVWMWFYIGEII EVWMWFYIGEII EVWMWFYIGEII EVWMWFYIGEII EVWMWFYIREII	101 GKRGIIGYDV GKRGIIGYDV GKRGIIGYDV GKRGIVGYDV GKRGIVGYDV GKRGIVGYDV GKRGIVGYDV GKRGIVGYDV GKRGIVGYDV GKRGIVGYDV			
^H Subunit g-1a ^H Subunit g-2a ^H Subunit g-2b ^H Homolog 1 ^M Subunit g ^M Homolog 1 ^M Homolog 2 ^R Homolog 1 ^R Homolog 3 ^E Homolog 3	71 8: GSFKQLTVKEAVLNGLVATH GSFKQLTVKEAVLNGLVATH GSFKQLTVKEAVLNGLVATH GSFKHLTVKEAVLNGLVATH GSFKHLTVKEAVLNGLVATH GSFKHLTVKEAVLNGLVATH CGFQHLTVKEAVLNGLVATH GGFKHLTVKEAVLNGLVATH	1 91 EVLMWFYVGEII EVLMWFYVGEII EVLMWFYVGEII EVMWFYIGEII EVWMWFYIGEII EVWMWFYIGEII EVWMWFYIGEII EVWMWFYIGEII EVWMWFYIREII	101 GKRGIIGYDV GKRGIIGYDV GKRGIIGYDV GKRGIVGYDV GKRGIVGYDV GKRGIVGYDV GKRGIVGYDV GKRGIVGYDV GKRGIVGYDV GKRGIVGYDV			
^H Subunit g-1a ^H Subunit g-2a ^H Subunit g-2b ^H Homolog 1 ^M Subunit g ^M Homolog 1 ^M Homolog 2 ^R Homolog 1 ^R Homolog 3 ^F Homolog 1 ^E Homolog 1 ^E Homolog 1	71 8: GSFKQLTVKEAVLNGLVATH GSFKQLTVKEAVLNGLVATH GSFKQLTVKEAVLNGLVATH GSFKHLTVKEAVLNGLVATH GSFKHLTVKEAVLNGLVATH GSFKHLTVKEAVLNGLVATH GGFKHLTVKEAVLNGLVATH GGFKHLTVKEAVLNGLVATH	l 91 EVLMWFYVGEIIG EVLMWFYVGEIIG EVLMWFYVGEIIG EVMMWFYIGEIIG EVMMWFYIGEIIG EVMMWFYIGEIIG EVMMWFYIGEIIG EVMMWFYIGEIIG EVMMWFYIGEIIG EVMFWFYIGECIG	101 GKRGIIGYDV GKRGIIGYDV GKRGIIGYDV GKRGIVGYDV GKRGIVGYDV GKRGIVGYDV GKRGIVGYDV GKRGIVGYDV GKRGIVGYDV GKRGIVGYDV GKRHIVGYNV			
^H Subunit g-1a ^H Subunit g-2a ^H Subunit g-2b ^H Homolog 1 ^M Subunit g ^M Homolog 1 ^M Homolog 2 ^R Homolog 1 ^R Homolog 3 ^F Homolog 1 ^F Homolog 1 ^F Homolog 2	71 8: GSFKQLTVKEAVLNGLVATH GSFKQLTVKEAVLNGLVATH GSFKQLTVKEAVLNGLVATH GSFKHLTVKEAVLNGLVATH GSFKHLTVKEAVLNGLVATH GSFKHLTVKEAVLNGLVATH GGFKHLTVKEAVLNGLVATH GGFKHLTVKEAVLNGLVATH GGFKHLTVKEAVLNGLVATH	1 91 EVLMWFYVGEII EVLMWFYVGEII EVLMWFYVGEII EVMMYFYIGEII EVWMWFYIGEII EVWMWFYIGEII EVWMWFYIGEII EVWMWFYIGEII EVWMWFYIGEII EVVFWFYIGECI EVIFWFYIGECI	101 GKRGIIGYDV GKRGIIGYDV GKRGIIGYDV GKRGIVGYDV GKRGIVGYDV GKRGIVGYDV GKRGIVGYDV GKRGIVGYDV GKRGIVGYDV GKRHIVGYNV GRRHIVGYNV			
^H Subunit g-1a ^H Subunit g-2a ^H Subunit g-2b ^H Homolog 1 ^M Subunit g ^M Homolog 1 ^M Homolog 2 ^R Homolog 1 ^R Homolog 3 ^F Homolog 1 ^F Homolog 1 ^F Homolog 2	71 8: GSFKQLTVKEAVLNGLVATH GSFKQLTVKEAVLNGLVATH GSFKQLTVKEAVLNGLVATH GSFKHLTVKEAVLNGLVATH GSFKHLTVKEAVLNGLVATH GSFKHLTVKEAVLNGLVATH GGFKHLTVKEAVLNGLVATH GGFKHLTVKEAVLNGLVATH GGFKHLTVKEAVLNGLVATH	1 91 EVLMWFYVGEIIG EVLMWFYVGEIIG EVLMWFYVGEIIG EVMMWFYIGEIIG EVWMWFYIGEIIG EVWMWFYIGEIIG EVWMWFYIGEIIG EVWMWFYIGEIIG EVWMWFYIGEIIG EVIFWFYIGECIG	101 GKRGIIGYDV GKRGIIGYDV GKRGIIGYDV GKRGIVGYDV GKRGIVGYDV GKRGIVGYDV GKRGIVGYDV GKRGIVGYDV GKRGIVGYDV GKRGIVGYDV GKRHIVGYNV GRRHIVGYNV			
^H Subunit g-1a ^H Subunit g-2a ^H Subunit g-2b ^H Homolog 1 ^M Subunit g ^M Homolog 1 ^M Homolog 2 ^R Homolog 1 ^R Homolog 3 ^F Homolog 1 ^F Homolog 1 ^F Homolog 1 ^C Homolog 1	71 8: GSFKQLTVKEAVLNGLVATH GSFKQLTVKEAVLNGLVATH GSFKQLTVKEAVLNGLVATH GSFKHLTVKEAVLNGLVATH GSFKHLTVKEAVLNGLVATH GSFKHLTVKEAVLNGLVATH GGFKHLTVKEAVLNGLVATH GGFKHLTVKEAVLNGLVATH GGFKHLTVKEAVLNGLVATH GAYKNLTVREAWLNTLVTAH SGLSQVTVAEAWLNVLVTVH	1 91 EVLMWFYVGEIIC EVLMWFYVGEIIC EVLMWFYVGEIIC EVSTWFYVREIIC EVWMWFYIGEIIC EVWMWFYIGEIIC EVWMWFYIGEIIC EVWMWFYIREIIC EVWMWFYIREIIC EVVFWFFVGEMIC	101 3KRGIIGYDV: 3KRGIIGYDV: 3KRGIIGYDV: 3KRGIVGYDV: 3KRGIVGYDV: 3KRGIVGYDV: 3KRGIVGYDV: 3KRGIVGYDV: 3KRGIVGYDV: 3KRGIVGYDV: 3KRGIVGYDV: 3KRGIVGYVV: 3KRHIVGYNV: 3RRHVGYNV: 3RRHVYNV: 3RRHVYNV: 3RRHVYNV: 3RRHVYNV: 3RRHVYNV: 3RRHVYNV: 3RRHVYNV: 3RRHVYNV: 3RRHVYNV: 3RRHVYNV: 3RRHVYNV: 3RRHVYNV: 3RRHVYNV: 3RRHVYNV: 3RRHVYNV: 3RRHVYNV: 3RRH	PANYVSKDT	'K <mark>akva</mark> ekkrlaa	 LE <mark>A</mark>

Fig. 2. Sequence alignment of subunit g and the isoforms of subunit g from animals. Conserved residues are in bold, and the residues that show variations within a given species are highlighted in blue. H, M, R, F, and C in superscript denote Human, Mouse, Rat, Fruit fly, and *C. elegans*, respectively.

possibly derived from single-nucleotide polymorphism, we found that there are two different subunits g of which the coding regions are localized to different chromosomes; one (named here as subunit g-1) localized to chromosome 3 and the others (named as subunit g-2a and b) to chromosomes 11. The protein sequences of the different subunits g are almost identical; 97–99% identity and 98–99% similarity (Fig. 2). In addition, we found a sequence homolog of the subunits g in humans. Except for the lack of three C-terminal amino acid residues and the replacement of some amino acid residues, the subunit g homolog shows very high homology to the reported human subunits g; 88% identity and 90% similarity.

Careful examination of the database of another animal, fruit fly, also led us to find two different potential subunits g (gene products of l(2)06225 and CG7211). The two potential subunits g were reported separately as components of the proton-transporting ATP synthase complex. The two proteins show 51% identity and 63% similarity. In addition, in the search of subunit g homologs in the mouse genome database, we found two protein sequences which are significantly homologous to the subunit g of mouse and whose expressions are identified. They show 98–99% identity and 99–100% similarity to the murine subunit g.

We further carried out BLAST search on the genomes of other animals of which the whole sequences are

		Location			
Organism	Name	Chromosome	Gene	Expression	Accession number
Human	Subunit g-1	11	ATP5L	Gene with protein product	O75964 (Strausberg <i>et al.</i> , 2002) and NP_006467 (Zhang <i>et al.</i> , 2000)
	Subunit g-2	3	DKFZp566G013 and AF092124.1:74385	Supported by alignment with mRNA	CAB43378 or T08727 (Wiemann <i>et al.</i> , 2001), and AAC61597
	Subunit g Homolog 1	n/a	AF092923.1:328630	Supported by alignment with mRNA	AAP97217
Fruit fly	Subunit g	2L	1(2)06225	Gene with protein product, a component of the proton-transporting ATP synthase complex	AAF53041
	Subunit g homolog 1	2L	CG7211	Gene with protein product, a component of the proton-transporting ATP synthase complex	AAF52549 and NP_609142 (Adams <i>et al.</i> , 2000)
Mouse	Subunit g	9	Atp51	Gene with protein	NP_038823 (Jeon
	Subunit g homolog 1	Х	LOC236764	Supported by alignment with mRNA	XP_125392
	Subunit g homolog 2	10	LOC231046	Supported by mRNA and EST alignments	XP_124482
Rat	Potential subunit g 1	8	LOC300677	Supported by alignment with ESTs	XP_217128
	Subunit g homolog 2 Subunit g homolog 3	6 15	LOC298752 LOC305891	Ab initio Supported by alignment with ESTs	XP_223814 XP_224187
C. elegans	ATP synthase g homolog ASG-1	Ι	asg-1	Gene with protein product	NP_492352 (Fraser <i>et al.</i> , 2000)
	ATP synthase g homolog ASG-2	Х	asg-2	Gene with protein product	NP_509152 (Kamath <i>et al.</i> , 2003)

Table I. Subunit g and Isoforms of Subunit g

available. From the search of the subunit g homologs in the genomes of rat and C. *elegans* in which the sequences of subunit g have not been identified yet, we found two or more subunit g homologs in these organisms (Table I). In rat, three subunit g homologs with significant homologies and with similar peptide length to the human and murine

subunits g have been found from the BLAST search in the rat genome database. They showed 66-82% identity and 69-88% similarity among them. Interestingly, another protein composed of 233-amino acid residues whose expression was identified by EST and whose function has not been assigned, was found by a BLAST search to have

Fig. 3. Sequence alignment of animal subunit g. Conserved residues in the sequence alignment of animal subunit g and the isoforms of subunit g are shown in bold colored with red (completely conserved), green (highly conserved; more than 80% identity), and yellow (weakly conserved; more than 70%, but less than 80% identity). Only identified subunit gs of animals are shown in this figure. The conserved acidic residue in the middle of transmembrane helix is indicated by an arrow.

a C-terminal sequence highly homologous to the subunit g homologs of rat. The C-terminal sequence of the protein shows 84% identity and 91% similarity to the subunit g homolog-1, which is the most homologous among the rat subunit g homologs to the identified subunits g of human and mouse. On the other hand, in *C. elegans*, we found two subunit g homologs by scanning the genome. The pairs of homologs show 76% identity and 83% similarity.

No subunit g isoforms seem to exist in fungi as a BLAST search for subunit g homologs in the genomes of S. cerevisiae and S. pombe found no additional protein sequences which have significant homology to the subunit

g. Taken together, we suggest that subunit g does have isoforms in animals.

A Conserved Acidic Residue in the Middle of Transmembrane Helix of Animal Subunit g

The sequence alignment of animal subunit g shows that the transmembrane domain is generally well conserved relative to the N- and C-terminal domains (Fig. 3). From careful examination of the transmembrane domain, we found that the completely conserved residues in the sequence alignment of animal subunit g are localized on one

Fig. 4. Orientation of the completely conserved residues in the transmembrane domain of subunit g, and the location of a conserved acidic residue in the middle of transmembrane helix. In the helical wheel diagram, the completely conserved residues are highlighted with boxes.

Yeast C. glabrata K. lactis Y. lipolytica E. nidulans N. crassa P. anserina S. pombe Beet Carrot C. globosum M. viride R. americana L. digitata O. danica M. jakobiformis A. parasiticum Earthworm A. pectinifera Sea urchin Honeybee Fruit fly Lancelet European sea b Goldfish Atlantic salmor Spiny dogfish Spotted catshan Atlantic cod Coelacanth Chicken Ostrich Sea lamprey Jaguarundi Puma Geoffroy's cat Cheetah Donkey Horse Harbor seal **Blue Whale** Ibex Sheep Hippopotamus Little red flying Long tailed bat Pig Rhinoceros Cat Dog Mouse Rat Meadow vole Guinea pig Squirrel Rabbit Wallaroo Orangutan Gorilla Human

	1	11 21	31	41	
	MPQLVPFY	MNQLTYGFLLMITLLIL	FSQFFLPMIL	RLYVSRLFISKL-	
	MPQLIPFY	MNQLTYGLLLITVLLIL	FSQFFLPMIL	RLYVSRLFISKL-	
	MPQLVPFY	LNQLVYGFALVTILLVL	FAQYFLPQIL	RLYVSRLFISKL-	
	MPQLVPFYF	TNQIFYGFASLSVIVYL	FSIYILPHYL	EIYVTRIFITKT-	
	MPOL VPFF	VNOVVFAFIVLTVLIYA	FSKYILPRLL	RTYISRIYINKL-	
	MPOLVPFYF	~ VNEITFTFVIITLMVYI	LSKYILPRFV	RLFLSRTFISKLS	DISKK
	MPOLVPFY	VNETTETETTLATTVYT	LSKYILPRFV	RLFLSRTFISKLL	G
	MPOLVPFY	TNILSEGELIETVLLYI	SSVYVLPRYN	ELETSESTISSI-	
	MPOL DOFT	FTOFFWCCLFFLTEVIL	TCNDPDCVLCIS	DIT KI DNOLI GUD	CNNTOSK DDNSLODIL PKGENTG / /
	MPOL DVETY		ICNDCDCLICIC	NTENERINGEDSHIN	ENNIGER DDNCIEDIIERGETC//
	MPOLDAFTI	T TOYEWI CI CEECEVUI		RIDKUKNQUUSHQ.	
	MPOLDQFII		CLD EELPRIS	RILKLR-SLLSIN	SVIVLGIPPS-DSLVSKSLASG//
				RIFKVRNARAISD	VSSKRIKIKLE-PLISFDSLLCISLEVS//
	MPQLDKVIP	FSQIFWLLIFFLIFIFF	VLKIVLPIVV	TIFKLRKKKLEAM	ASEVEQLEREQSSILSNIDSVLIDSFSSS//
	MPQFDIMIE	LUOALMTITIALULATA	VVRFILPSLA	FSLKSRIKHLKVT	
	MPQFDIFAP	YPIVFWLTISLLAFYLF	F"I'KSF'VVNAARV	LKLRSQLNELSSF	FAVDLYSSLIKRSI
5	MPOLDNA.LE	LSQIFWCFITFSLLYFI	VLKNILPNIAKV	LKIRKKLFDYYNS.	LFNNINTINNNYIVFKSSDISNLFFIINK//
	MPHLDVCTF	IAQYNWTMITLSSLYLC	SLIGLPGIARVL	HLRASASIGSASA	NTGVSAVIAEANAVSQDTDVFVATMLKPVA-
	MPHLSPMSW	ITSMLMFWISVSILFST	LWWSNNYLFSS-	-KMTNCAPKSLTP	<mark>W</mark> NWL
	MPQLNLAW	LLNFFLGWTSLLVIFII	LLNTSITNN-TA	NTSTTTNTTPN	LNWTWN
	MPQLDFTWM	UINFFIIWTAILLTLVI	LVNNKTAQN-LT	TTDSLQIEKNS	TNWQWL
	MPQMMPMKW	<pre> FLIYFIYLLIFYLFIML </pre>	IN-SMLIKT-KI	NKETLKIKLKK	<mark>W</mark> NWFW
	MPQMAPISW	LLLFIIFSITFILFCSI	NYYSYMPNS-PK	SNELKNINLNS	MNW KW
	MPQLNPIPW	VFLFFLVWLVLGFLGLQ	<mark>K</mark> FTSVVTTTLDD	SSEEVEVKSKE	<mark>Y</mark> SWPW
oass	MPQLLPTPW	▼FTIFIYAWMVLLAVIPL	<mark>K</mark> ILSYVYPNHNY	LRGLQKPSEHS	<mark>W</mark> FWPWS
	MPQLNPGPW	FAILVFSWLVFLTIIPT	<mark>K</mark> ILSHISPNEPT	PVSAEKHKTES	<mark>W</mark> DWPW
n	MPQLNPAPW	<pre> FAILVFSWLVFLTVIPP </pre>	<mark>K</mark> VLGHTFTNEPT	SQSTEKAKPEP	<mark>W</mark> NWPWH
	MPQLNPHPW	V FAILVFSWIFFLVILPK	<mark>K</mark> VMTHLFNNNPT	AKSAEKPKPE – – P	<mark>W</mark> NWPWT
rk	MPQLNPSPW	¶FIILLFSWVIFMVILPN	<mark>K</mark> VMNHLFNNEPA	LKSTEKSKPDP	<mark>W</mark> NWPWL
	MPQLNPAPW	¶FMIFMFTWAIFLTILPP	<mark>k</mark> vmahtfpneps	PQGMTTPKTAP	<mark>W</mark> NWPWH
	MPQLNPSPW	LLILLFSWLIFLTMLPS	<mark>K</mark> TQLHTFPNMPS	TQNMCKQEPEP	WTWPWA
	MPQLNPNPW	FSIMLLTWFTFSLLIQP	<mark>K</mark> LLSFTLTNNPA	N-KITTTKPTP	wTWPWT
	MPQLNPNPW	LFIMFMSWTVFLFLMQP	K LTSFISTNSPS	NKNKTTLTPTP	wTWPWT
	MPQLDPAPW	FSMLTVSWLIIFLLIMP	TILFYOPONTIS	TKQVTKPKQST	WTWPWH
	MPQLDTST	FITIVSMIMTLFIMFQL	KISKYLYSSNP-	EPKPMTTLKQLNP	wekk
	MPOLDTST	FITIVPMIMTLFIMFOL	<mark>K</mark> ISKYLYPSNP-	EPKSTITLKOSNP	wekk
	MPOLDTSTW	FITIMSMIMTLFIMFOL	KISKYLYPSNP-	EPKSMDTLKOLNP	wekk
	MPOLDTSTW	FITIMSMIMTLFIVFOL	KISKHLYPSNP-	EPKSMITLEOPNP	wekk
	MPOLDTSTW	FINIVSMILTLFIVFOL	KISKHSYPMHP-	EAKTTKMAKRLTP	WESKWTKIYSPLSLPOO
	MPOLDTSTW	FINIVSMILTLFIVFOL	KISKHSYPTHP-	EVKTTKMTKHSAP	WESKWTKIYSPLSLPOO
	MPOLDTSTW	TITMILSMILTLEITEOL	KUSKHYFPTNP-	EPKHTPLLKNSAP	WEEKWTKIYSPLSLPLO
	MPOLDTST	J.J.TTLSMLLTLFVLFOL	KTSKHSYSPNP-	KI-VPTKTOKOOTP	₩ ₩NTTWTKTYI,₽I,
	MPOLDTSTW	T.TTTI.SMFLALFITFOL	KISKHNFYHNP-	FLTT-KVLKONTP	wetkwtktyl.pl.t.pt
	MPOLDTST	TTMILSMELVLEITEOL	KISKHNFYHNP-	ELMTTKTPKONTP	WETKWTKIYI,PI,SI,PI,
	MPOLDTST	FTTILSMELTLEITEOL	KISKHTYHPNP-	ETTL PMTOKOPTP	WETKWTKIYSPLSIPLOS
g fox	MPOLDTST	FITTI SMILTIVIIMOL	KISKHTVVOND-	FDTTTKSTKHI.TD	WENKWTKIVSDISI.DI.O
	MPOLDTST	FITTMEMIATLEIMEOL	KISKUVVVTVD_	FDI.ATKTOTUNTD	WEAKWTKIVI.DI.SI.DOH
	MPOLDTST	FITTEMINTATUFINEQU	KISKIIIIIII	FGIFI.KTOKUGTD	WEMKWTKIVI.DII.I.DDB
	MPOT DTOT		VI GVUGVDGND_	EJ VDINTOMUTTD	
			TOVVI VDOND-	EDKFINISMAIIF	MESKWIKIISPLSLPQQ
			TOMIVVDEND	MTYCAYTACOUND	MERKWIKI VOLI CI DDO
			LISNALIPENP-	CDKCI DEMKUKED	MENKWIKI ISULSUPPO
			KVSSQIFPLAP-	ODVENN TEVENND	
	MPQLDISIN	FITTISSMATLFILFQL	KISSQIFPAPP-	SPRIMATERINNP	
	MPQLDTST	FTTVLSTTTTLFTLMQL	KISLHNFPQTP-	SVKSIKYMKTDNP	WESKWIKI ISPLSLPLQ
	MPQLDTSTW	FIVILSMIISLFMLLQL	LISSHERATDA	ATMSEKTTKHNLP	WENNWIKIYI DI CI DI U
	MPQLDTST	FITIISMILALFMLFQS	KIANHSYYSNP-	SHKDMKPTTHSTP	WERKWIRTITTELSTELH
	MPQLDTST	FTTIVAMILSLFILMQL	KFHKYTYPMNP-	VLKALESTSFPCP	WETKWIKIYSPLSLPQH
	MPQLDTSTW	LLTTTLMILALFCIYQS	KMINQ'I'MISIPP	QUKKVIKPTTQLP	WESKWIKIYLPHSSPLLS
	MPQLNTTTW	LTIITPTLLALFLITQL	KLLNSHLHPPT-	PPKFTKTKPHAKP	WELKWTKIYSPHSLPPQY
	MPQLNTTVW	PTMIAPMLLTLFLITQL	KVLNTNYHLPP-	LPKTMKMKNFCKP	WEPKWTKIYSLHSLPPQS
	MPQLNTTVN	PTMITPMLLTLFLITQL	KMLNTNYHLPP-	SPKPMKMKNYNKP	WEPKWTKICSLHSLPPQS
	- -	11 21	31	41	51 61

Fig. 5. Sequence alignment of A6L. The 60 out of 76 aligned A6L sequences are shown in this figure. Conserved residues are highlighted the same as in Fig. 3. The conserved aromatic residue in the MPQLX₄Ar motif is marked by an arrow. The A6L from some species of which the sequences are much longer than most other A6L sequences are truncated at their C-termini (marked with //).

Fig. 6. Sequence alignment of plant A6L and OrfB. Conserved residues are highlighted the same as in Fig. 3.

side in the transmembrane helix (Fig. 4). The conserved side of the helix includes completely conserved two aromatic residues (Trp86 and Phe87 in the human sequence), and three acidic residues (Glu72, 81, and 91 in the human sequence). The conserved side is likely to play a major role in the interaction of subunit g with adjoining subunits since it contains most of the completely conserved residues of subunit g.

In the sequence alignment of animal subunit g, we found also in the transmembrane domain that three conserved aromatic residues (completely conserved Trp86 and Phe87, and highly conserved Tyr88 in the human sequence) are clustered and that a conserved acidic residue, Glu82 in the human sequence, is positioned in the middle of the transmembrane helix (Fig. 4). The location of the acidic residue attracts attention as its presence in the

middle of a transmembrane helix is uncommon. Interestingly, a rare case is found in another subunit in the ATP synthase complex, subunit c. In this subunit that comprises the central part of the F_O motor together with subunit a, a conserved acidic residue is located in the middle of transmembrane helix, and plays a crucial role in the proton translocation across the membrane. No other subunits of the ATP synthase are found to contain a conserved acid residue in the middle of a transmembrane helix. The role of the acidic residue conserved in the middle of a transmembrane helix of subunit g in animals needs further study, and is suggested here to play a significant role in the function of this subunit.

A Conserved MPQLX₄Ar Motif at the N-terminal Domain of the Subunit A6L

The supernumerary subunit A6L has been reported previously to contain a highly conserved MPQL motif from sequence alignment (Gray *et al.*, 1998; Stephens *et al.*, 2003). To determine whether other functionally important conserved motifs might be present, we retrieved and aligned three times more sequences than had been aligned previously. The careful examination of the 76 aligned sequences of A6L led us to discover that an aromatic residue is conserved at the fifth residue after the conserved MPQL motif at the N-terminal domain (Fig. 5). The other domains, i.e. the transmembrane and the C-terminal domains showed no residues or motifs that were significantly conserved.

Recently, it has been suggested based on the experimental data that the OrfB, which is involved in cytoplasmic male sterility in plants, is the plant equivalent of A6L (Heazlewood et al., 2003; Sabar et al., 2003). On the basis of this information, we retrieved and aligned the protein sequences of A6L and OrfB from plants. From the sequence alignment, as shown in Fig. 6, we found that the two proteins, A6L and OrfB are highly homologous, and in some plants where both the A6L and OrfB sequences are available, the sequences of the two proteins are the same (e.g., A6L and OrfB from beet), or almost identical (e.g., A6L-1 and OrfB-CMS, and A6L-2 and OrfB-F2 from carrot). As seen in the sequence alignment of A6L in Fig. 5, the lengths of the C-terminal domain of A6L are quite variable, and in plants, the C-terminal domain is remarkably elongated compared to fungi and animals. The long additional sequence at the C-terminal domain found in plants is highly conserved among plants except at the end region of the domain. This suggests that this sequence may be associated with a particular function that is unique to plants. Despite the variations in the A6L and OrfB sequences in animals, fungi, and plants, an aromatic acid residue is always found conserved at position 9. The MPQLX₄Ar motif that includes the conserved aromatic residue, seems to be the only conserved motif in A6L and plant OrfB, and is likely to play a role in the function of A6L.

ACKNOWLEDGMENT

This work was supported by NIH Grant No. CA 10951 to PLP.

REFERENCES

- Adams, M. D., Celniker, S. E., Holt, R. A., Evans, C. A., Gocayne, J. D., Amanatides, P. G., Scherer, S. E., Li, P. W., Hoskins, R. A., Galle, R. F., George, R. A., Lewis, S. E., Richards, S., Ashburner, M., Henderson, S. N., Sutton, G. G., Wortman, J. R., Yandell, M. D., Zhang, Q., Chen, L. X., Brandon, R. C., Rogers, Y. H., Blazej, R. G., Champe, M., Pfeiffer, B. D., Wan, K. H., Doyle, C., Baxter, E. G., Helt, G., Nelson, C. R., Gabor, G. L., Abril, J. F., Agbayani, A., An, H. J., Andrews-Pfannkoch, C., Baldwin, D., Ballew, R. M., Basu, A., Baxendale, J., Bayraktaroglu, L., Beasley, E. M., Beeson, K. Y., Benos, P. V., Berman, B. P., Bhandari, D., Bolshakov, S., Borkova, D., Botchan, M. R., Bouck, J., Brokstein, P., Brottier, P., Burtis, K. C., Busam, D. A., Butler, H., Cadieu, E., Center, A., Chandra, I., Cherry, J. M., Cawley, S., Dahlke, C., Davenport, L. B., Davies, P., de Pablos, B., Delcher, A., Deng, Z., Mays, A. D., Dew, I., Dietz, S. M., Dodson, K., Doup, L. E., Downes, M., Dugan-Rocha, S., Dunkov, B. C., Dunn, P., Durbin, K. J., Evangelista, C. C., Ferraz, C., Ferriera, S., Fleischmann, W., Fosler, C., Gabrielian, A. E., Garg, N. S., Gelbart, W. M., Glasser, K., Glodek, A., Gong, F., Gorrell, J. H., Gu, Z., Guan, P., Harris, M., Harris, N. L., Harvey, D., Heiman, T. J., Hernandez, J. R., Houck, J., Hostin, D., Houston, K. A., Howland, T. J., Wei, M. H., and Ibegwam, C. (2000). Science 287. 2185-2195.
- Altschul, S. F., and Koonin, E. V. (1998). Trends Biochem. Sci. 23, 444– 447.
- Altschul, S. F., Madden, T. L., Schaffer, A. A., Zhang, J., Zhang, Z., Miller, W., and Lipman, D. J. (1997). *Nucl. Acids Res.* 25, 3389– 3402.
- Arnold, I., Pfeiffer, K., Neupert, W., Stuart, R. A., and Schagger, H. (1998). EMBO J. 17, 7170–7178.
- Belogrudov, G. I., Tomich, J. M., and Hatefi, Y. (1996). J. Biol. Chem. 271, 20340–20345.
- Boyle, G. M., Roucou, X., Nagley, P., Devenish, R. J., and Prescott, M. (1999). *Eur. J. Biochem.* **262**, 315–323.
- Fraser, A. G., Kamath, R. S., Zipperlen, P., Martinez-Campos, M., Sohrmann, M., and Ahringer, J. (2000). *Nature* 408, 325–330.
- Gray, M. W., Lang, B. F. R. C., Golding, G. B., Lemieux, C., Sankoff, D., Turmel, M., Brossard, N., Delage, E., Littlejohn, T. G., Plante, I., Rioux, P., Saint-Louis, D., Zhu, Y., and Burger, G. (1998). *Nucl. Acids Res.* 26, 865–878.
- Heazlewood, J. L., Whelan, J., and Millar, A. H. (2003). FEBS Lett. 540, 201–205.
- Hirokawa, T., Boon-Chieng, S., and Mitaku, S. (1998). *Bioinformatics* 14, 378–379.
- Hong, S., and Pedersen, P. L. (2003). J. Bioenerg. Biomembr. 35, 95–120. Jeon, D., Kim, H., and Baik, M. (1999). Biosci. Biotechnol. Biochem. 63, 767–768.
- Kamath, R. S., Fraser, A. G., Dong, Y., Poulin, G., Durbin, R., Gotta, M., Kanapin, A., Le Bot, N., Moreno, S., Sohrmann, M., Welchman, D. P., Zipperlen, P., and Ahringer, J. (2003). *Nature* 421, 231–237.
- Pedersen, P. L., Ko, Y. H., and Hong, S. (2000). J. Bioenerg. Biomembr. 32, 325–332.

- Sabar, M., Gagliardi, D., Balk, J., and Leaver, C. J. (2003). *EMBO Rep.* 4, 381–386.
- Schuler, G. D., Altschul, S. F., and Lipman, D. J. (1991). Proteins 9, 180–190.
- Stephens, A. N., Khan, M. A., Roucou, X., Nagley, P., and Devenish, R. J. (2003). J. Biol. Chem. 278, 17867–17875.
- Strausberg, R. L., Feingold, E. A., Grouse, L. H., Derge, J. G., Klausner, R. D., Collins, F. S., Wagner, L., Shenmen, C. M., Schuler, G. D., Altschul, S. F., Zeeberg, B., Buetow, K. H., Schaefer, C. F., Bhat, N. K., Hopkins, R. F., Jordan, H., Moore, T., Max, S. I., Wang, J., Hsieh, F., Diatchenko, L., Marusina, K., Farmer, A. A., Rubin, G. M., Hong, L., Stapleton, M., Soares, M. B., Bonaldo, M. F., Casavant, T. L., Scheetz, T. E., Brownstein, M. J., Usdin, T. B., Toshiyuki, S., Carninci, P., Prange, C., Raha, S. S., Loquellano, N. A., Peters, G. J., Abramson, R. D., Mullahy, S. J., Bosak, S. A., McEwan, P. J., McKernan, K. J., Malek, J. A., Gunaratne, P. H., Richards, S., Worley, K. C., Hale, S., Garcia, A. M., Gay, L. J., Hulyk, S. W., Villalon, D. K., Muzny, D. M., Sodergren, E. J., Lu, X., Gibbs,
- R. A., Fahey, J., Helton, E., Ketteman, M., Madan, A., Rodrigues, S., Sanchez, A., Whiting, M., Young, A. C., Shevchenko, Y., Bouffard,
 G. G., Blakesley, R. W., Touchman, J. W., Green, E. D., Dickson,
 M. C., Rodriguez, A. C., Grimwood, J., Schmutz, J., Myers, R. M.,
 Butterfield, Y. S., Krzywinski, M. I., Skalska, U., Smailus, D. E.,
 Schnerch, A., Schein, J. E., Jones, S. J., and Marra, M. A. (2002). *Proc. Natl. Acad. Sci. U.S.A.* 99, 16899–16903.
- Thompson, J. D. (1994). Nucl. Acids Res. 22, 4673-4680.
- Wiemann, S., Weil, B., Wellenreuther, R., Gassenhuber, J., Glassl, S., Ansorge, W., Bocher, M., Blocker, H., Bauersachs, S., Blum, H., Lauber, J., Dusterhoft, A., Beyer, A., Kohrer, K., Strack, N., Mewes, H. W., Ottenwalder, B., Obermaier, B., Tampe, J., Heubner, D., Wambutt, R., Korn, B., Klein, M., and Poustka, A. (2001). *Genome Res.* **11**, 422–435.
- Zhang, Q. H., Ye, M., Wu, X. Y., Ren, S. X., Zhao, M., Zhao, C. J., Fu, G., Shen, Y., Fan, H. Y., Lu, G., Zhong, M., Xu, X. R., Han, Z. G., Zhang, J. W., Tao, J., Huang, Q. H., Zhou, J., Hu, G. X., Gu, J., Chen, S. J., and Chen, Z. (2000). *Genome Res.* **10**, 1546–1560.